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Log-space computation

Definition

Figure 1: Log-space transducer

Read-only input tape Write-only output tape
· · · · · ·

Read/write work tape
· · ·

Has only logarithmic work space, but still relatively powerful

Closed under function composition

Closed under complement

Can run for (at most) polynomial time

L is the class of problems computable by some log-space transducer
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Circuit complexity

Example

Figure 2: Output node is 1 iff input has at least one 0 and one 1

x1 x1x2 x2x3 x3

∨ ∨

∧

Circuit (family) classes:

NC0: Fan-in 2, constant depth, poly-size

AC0: Unbounded fan-in, constant depth, poly-size

Projection: no gates, only wires from input to output (possibly
negated)
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(NISZK) Non-interactive, statistical zero knowledge proof

Intuition: prover wants to prove input x has some property to the verifier
without revealing additional information

Definition

An NISZK proof system consists of four main parts:

Prover: very powerful machine, outputs some distribution of proofs
given (x , σ).

Verifier: randomized, limited machine which almost always accepts if
correct proof is provided for (x , σ) (completeness), and almost always
rejects on a fake or insufficient proof (soundness)

Simulator: used to guarantee zero knowledge. Should output a
distribution of proofs statistically similar to the prover’s distribution

Reference string σ: uniformly random string provided to verifier and
prover to use during the proof - ”shared randomness”

Gray, Mutreja, Wang Restricted Non-interactive Zero Knowledge Proofs July 21, 2022 5 / 26



Known results
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NISZKL

NISZK, but with log-space verifier and simulator. Introduced in 2020
paper by Allender and REU students [All+21].

Was shown to have two complete problems - SDUNC0 and EANC0 - which
are modified versions of complete problems for NISZK.

Definition

Promise-EANC0 : a promise problem over pairs (C , k), where C is an NC0
4

circuit and k an integer.

(C , k) ∈ EAYES if the Shannon entropy of C is ≥ k + 1
(C , k) ∈ EANO if the Shannon entropy of C is ≤ k − 1.

Not much else was known about this class outside of this paper.
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Perfect randomized encodings
Introduced in [AIK06] to show that NC0 had OWFs iff more powerful
classes like NL did.

Definition

Adapted from [All+21, Definition 27] (perfect randomized encoding):

Let f : {0, 1}n → {0, 1}l(n) be a function. We say that
f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a perfect uniform randomized encoding
of f with blowup b if it is:

Input Independent: for every x , x ′ ∈ {0, 1}n such that f (x) = f (x ′),
f̂ (x ,Um) and f̂ (x ′,Um) are identically distributed.

Output Disjoint: for every x , x ′ ∈ {0, 1}n such that f (x) ̸= f (x ′),
supp f̂ (x ,Um) ∩ supp f̂ (x ′,Um) = ∅.
Uniform: for every x ∈ {0, 1}n the random variable f̂ (x ,Um) is
uniform over supp f̂ (x ,Um).

Balanced: for every x , x ′ ∈ {0, 1}n
| supp f̂ (x ,Um)| = | supp f̂ (x ′,Um)| = b.
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New results
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NISZKL = NISZKAC0

Since AC0 ∈ L, it is clear that NISZKAC0 ∈ NISZKL.
To prove: NISZKL ∈ NISZKAC0 The Entropy Approximation Problem in
NC0, denoted EANC0 , is a complete problem for NISZKL.
We will show that EANC0 ∈ NISZKAC0 .
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Proving EA ∈ NISZK

Transform an instance (C , k) of EA of length s into a distribution Z by

Taking poly(s) copies of X

hashing

repeat items 1 and 2

The Problem: AC0 circuits cannot compute hash functions. They can be
computed in logspace.

Gray, Mutreja, Wang Restricted Non-interactive Zero Knowledge Proofs July 21, 2022 11 / 26



Solution

Theorem

There exists a constant c such that, for every k(n) > n/ poly(log n), and
every r(n) ∈ [Ω(log n), k(n)/c], extraction of (1 + c) · r(n) bits that are
ϵ(n) = 1

n3
close to {0, 1}(1+c)·r(n) in total variation distance is possible in

uniform AC0 using a seed of length r(n).

Theorem

There is a polynomial time computable function that takes an instance
(X ,m − a) of EANC0 and a parameter s, and produces a distribution Z on
{0, 1}l such that:

1 If H(X ) > m − a+ 1, then Z has statistical difference at most
1/ poly(s) from the uniform distribution on {0, 1}l .

2 If H(X ) < m − a− 1, then the support of Z is at most a 2−s fraction
of {0, 1}l .
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Non Interactive Proof System

1 Let Z be the distribution on {0, 1}l obtained from (X ,m − a) taking
s to be the total description length of (X ,m − a) in bits. Let
σ1, σ2, . . . , σs/ log s ∈ {0, 1}l be the reference strings. The verifier
sends σ1, σ2, . . . , σs/ log s to the prover.

2 The prover picks an i at random from i ∈ {0, 1, . . . , s/ log(s)} such
that |{ri |Z (ri ) = σi}| ≠ ϕ. Then, after fixing i ,it picks a random ri
from {ri |Z (ri ) = σi}. It sends ri to the verifier.

3 V accepts if Z (ri ) = σi .
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Simulator

1 Let Z be obtained from (X ,m − a) as in the proof system.

2 Sample an i uniformly at random from {1, 2, . . . , s/ log s}.
3 For this index i ,sample ri at random, and compute Z (ri ) = σi .

4 For all j ∈ {1, 2, . . . , i − 1, i + 1, . . . , s/ log(s)}, sample σj uniformly
at random.

5 Output (ri , σ1, . . . σi = Z (ri ), . . . σs/ log(s))
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Completeness

Claim

If H(X ) > m − a+ 1, then the verifier accepts with probability ≥ 1− 1
2s .

Proof.

If H(X ) > m − a+ 1, then TV (Z ,U{0,1}l ) ≤ 1
poly(s) . Thus, for a given i

P(∃ri |Z (ri ) = σi ) ≥ 1− P(∄ri |Z (ri ) = σi )

≥ 1−
s/ log(S)∏

i=1

1

poly(s)

≥ 1− 1

poly(s)s/ log s

≥ 1− 1

2s
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Soundness

Claim

If H(X ) < m − a− 1, then the verifier accepts with probability ≤ 1
2s .

Proof.

If H(X ) < m − a− 1, then, by Lemma 0.2, the support of Z is at most a
2−s fraction of {0, 1}l . Thus,

P(verifier accepts) = P(∃i |Z (ri ) = σi )

≤
s/ log s∑
i=1

1

2s

≤ s

log s
· 1
2s

≈ 1

2s
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Construction of Distribution Z by AC0 Circuits

We let s ≈ m be the length of the description of an instance of (X , k) of
EA.
Let the threshold for the EA problem be k = m − a, where a is a small
constant ∈ (0, 1).
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STEP 1: Many copies of distribution X

Let m (resp. n) be the number input (resp. output) gates to X . We take
q = 4sm2 independent copies of X to create distribution X ′. Observe that
H(X ′) = q · H(X ). For every x ,P(X = x) ≥ 1

2m . So the flattening lemma
implies that X ′ is δ =

√
q ·m = 2

√
s ·m2 flat.

Thus,

1 if H(X ) > k + 1, then H(X ′) > q · k + q > qk.

2 If H(X ) < k − 1, then H(X ′) < q · k − q.
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STEP 2: Using AC0 Randomness Extractor on X ′

Randomness source: r ∈ {0, 1}qk/c , where c is the constant mentioned in
theorem 1. Consider distribution Y on
E (x ′, r) : {0, 1}qm × {0, 1}qk/c → {0, 1}qk+qk/c .

1 If H(X ) > k + 1, then the statistical difference of Y from the uniform
distribution over {0, 1}qk+qk/c is at most 1/(qm)3.

2 If H(X ) < qk − 1, then H(Y ) < q · k − q + qk/c .
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STEP 3: Many copies of distribution Y

1 If H(X ) > k + 1, then Y ′ has statistical difference at most
q′ · 1

(qm)3
= (4s(qm)2) · 1

(qm)3
= 4s

qm = 1
m3 = O 1

poly(s) .

2 If H(X ) < k − 1, then H(Y ′) < q′ · H(Y ) < q′ · q · k · ( c+1
c )− q′ · q.
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STEP 4: Using AC0 randomness extractor on Y ′.

Let Z be the resulting distribution.
Z (r ′) = (Y ′(r ′),E (r ′, r))
If H(X ) > k + 1,the statistical distance of Z from uniform is ≈ 1/ poly(s).
If H(X ) < k − 1,
S1 : {(Y ′(r ′),E (r ′, r))|P(Y ′(r ′) = y ′) ≤ 2−N−2M}
S2 : {(Y ′(r ′),E (r ′, r))|2−N−2M ≤ P(Y ′(r ′) = y ′) ≤ 2−N}
S3 : {(Y ′(r ′),E (r ′, r))|P(Y ′(r ′) = y ′) ≥ 2−N}
For i ∈ {1, 2, 3}, |Si |/|D| = 1

2s , where D is the uniform distribution.
Thus, Z = S1 ∪ S2 ∪ S3
|Z |/|D| = 1

2s
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NISZKL = NISZKNL

For an arbitary problem Π ∈ NISZKNL, let (S ,P,V ) be its protocol. Then,
we will run the following:

Algorithm 1: Mx(s)

Data: x ∈ Π ∪ Π̄, s coin flips, (S ,V ) the simulator and verifier
(σ, p)← S(x) // under coin flip s
if V (σ, p) = 1 then

return σ;
else

return 0|σ|;

(Convince yourself that Mx(s) is NL-computable). Now, on x ∈ Π, w.h.p.
Mx(s) is uniform over its support, and on x ̸∈ Π w.h.p. Mx(s) has small
support. We want to find an encoding of Mx(s) in NC0 with similar
entropy.
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NISZKL = NISZKNL

Idea: [RA97] shows that for any instance of

PATH := {⟨G , s, t⟩ : s ⇝ t}

there is a random weight assignment
W = {wi : i ∈ [n2]},wi : E (G )→ [4n2] such that with probability
exponentially close to 1: ∃i minimal such that (G ,wi ) has a unique
minimum path from s to t.
This reduces any NL problem to a UL problem, where UL is a class already
known to have perfect randomized encodings in NC0. This completes the
high level idea of our proof.
We also proved that NISZKL = NISZKPM using a similar proof, but due to
time constraints it won’t be explained here.
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Summary

Presented results:

NISZKAC0 = NISZKL = NISZKNL

Going forward:

NISZKL
?
= NISZKDET

OWFs ∈ NC0 ?↔ OWFs ∈ DET
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